Expected to impact absorption energy using modified regression theory

M Barandan, M R Jafarian

Abstract


In this study new mathematical models were proposed and developed by using a regression equation for
the  prediction  of  impact  energy  absorption  of  hybrid  ferrocement  slabs.  Slabs  were  made  up  of  self-compacting
concrete  (SCC)  in  order  to  minimize  the  external  vibration  work.  Slabs  of  size  300    X  300  mm  with  varying
parameters  such  as  depth  of  slab  (25  &  30  mm),  number  of  layers  of  weld    mesh  (2  and  3  layers  bundled),  and  
wrapping with  Glass Fiber Reinforced Polymer sheets  (GFRP) (1 and 2 layers) along with a specified proportion (0
and  0.30%)  of  polypropylene  fibers  were  cast.  Impact  load  was  applied  by  means  of  a  hammer  of  weight  3.5  kg
(34.335  N)  and  the  initial  and  ultimate  energy  absorptions  were  evaluated.  The  variables  used  in  the  prediction
models were the varying parameters such as number of layers of GFRP sheet, area of weld mesh and height of drop.
According  to  the  analysis,  the  models  provide  good  estimation  of  impact  energy  absorption  and  yielded  good
correlations with the data used in this study.

References


. Suhad M.A., Mathematical model for the prediction of cement compressive strength at the ages of 7 & 28 days

within 24 hours, MSc Thesis, Al-Mustansiriya University, college of engineering, civil engineering department,


. Sudarsana Rao.H, Vaishali G, Ghorpade. N., Ramana V, Gnaneswar K, (2010), ‘Response of SIFCON two-way

slabs under impact loading’, International Journal of Impact Engineering,37, pp. 452–458.

. Padmanaban.I, Kandasamy.S, (2011), ‘Effect of compressive strength on impact energy for fly ash concrete’,

Journal of Structural Engineering, Vol. 38(2), pp: 109–116.

. M. F. M. Zain, Suhad M. Abd, K. Sopian, M. Jamil, Che-Ani A.I, “Mathematical Regression Model for the

Prediction of Concrete Strength”, Mathematical Methods, Computational Techniques, Non-Linear Systems,

Intelligent Systems, ISBN: 978-960-474-012-3.

. IS 383-1970 (reaffirmed 1997), Specification for Coarse and Fine Aggregates from Natural Sources for

Concrete, Bureau of Indian Standards, New Delhi.

. IS 1489 (Part 1): 1991 Indian standard Portland – Pozzolana cement Specification - Fly ash based (Third

revision), Bureau of Indian Standards, New Delhi.

. EPG guidelines, The European guidelines for self – compacting concrete specification, production and use.

http://www.efnarc.org/pdf/SCCGuidelinesMay2005.pdf.

. ACI Committee 549R – 97, State-of-the-art report on ferrocement.ACI 549. 1R-93. Guide for the design,

Construction, and repair of ferrocement. Reapproved 1999.

. Neville AM,Brooks JJ. Concrete Technology, Malasia: Pearson Education As Pte Ltd, PP(CTP); 2008.

. Antoine E. Naaman,(2000),Ferrocement and Laminated Cementitious Composites, Techno Press 3000, (1

st

ed.)USA.

. ACI 544.2R-89 (Reapproved 1999), Measurement of properties of fiber reinforced Concrete reported by ACI

Committee 544. http://civilwares.free.fr/ACI/MCP04/5442r89.pdf.

. Bayramov, F.,tasdemir, C., and tesdemir, M.A., (2004),”Optimization of steel reinforced concretes by means of

statistical response surface method”, Cement and concrete composites, 26(6): 665 – 675.

. Montgomery, D.C, Peck, E.A., and Vinning, G.G., (2001), Introduction to Linear Regression, third edition.

John Wiley and Sons, Inc., New York.

. Neter, J., Kutner, M.H,Nachtsheim, C.J., and Wasserman, W., 1996 applied linear regression models. Third

edition. McGraw-Hill Companies, Inc., USA.



Refbacks

  • There are currently no refbacks.